

MICROGRAVITY PROPELLANT GAUGING USING MODAL

ANALYSIS: PHASE II

(Proposal Number will be assigned by FOP)

Technology Need

Propellant mass gauging is currently only feasible for settled propellant.

Gauging uncertainties increase toward mission end-of-life, increasing costs associated with mission design and decreasing effective mission life.

Gauging uncertainties typically account for a significant fraction of mission cost.

The proposed MPG method demonstrates gauging unsettled propellant with accuracy that exceeds existing methods by an appreciable measure.

Technology Concept

Fluid *Mass Loading* refers to the change in structural properties of a material immersed in a fluid. In MPG, we exploit the shift in acoustic resonance modes of a propellant tank resulting from liquid propellant adhered to the tank walls in zero-g.

The MPG technology is currently at TRL 4-5.

Technology Development Team

Project PI: Dr. Kevin Crosby, Professor of Physics and Dean of Natural and Social Sciences, Carthage College

Test Apparatus

The MPG Flight Rig consists of two 7-liter propellant tanks, a flow loop that moves propellant simulant (water) between the tanks, and a data acquisition system.

The experimental rig occupies a volume (LxWxH) of 27-in x 27-in x 36-in. and has a total weight of 180 lb.

Flight Requirements/Objectives

Test Plan: Acquire 30 data points at 1% fill-fraction intervals at 5 data points per fill level. **Objective 1:** Demonstrate unsettled zero-g gauging accuracies of 1.5-2.0% of tank volume with comparable measurement uncertainties in a COPV tank.

Objective 2: Demonstrate efficacy of MPG approach at 2 different tank pressure states. **Objective 3**: Characterize the gauging method during zero-g continuous transfer operations.

Technology Advancement

The parabolic test program will demonstrate real-time gauging of zero-g unsettled propellant with markedly higher resolution and lower uncertainties than existing methods. Results will be demonstrated in a COPV in the low-fill (end-of-life) regime. The test program will advance the MPG tech. to TRI 5-6.

Technology End Users

MPG End-users include commercial and military satellite providers, NASA human spaceflight program, and launch services providers. Commercial and NASA programs developing onorbit fuel depots are also considered as potential end users.

Technology Area: TA-02.4 In-Space Propellant Gauging